上篇用上帝视角多整个框架做了一个概述,同时也看清了web框架的的本质,下面我们从tornado程序的起始来分析其源码。

概述

上图是tornado程序启动以及接收到客户端请求后的整个过程,对于整个过程可以分为两大部分:

  • 启动程序阶段,又称为待请求阶段(上图1、2所有系列和3.0)

  • 接收并处理客户端请求阶段(上图3系列)

简而言之:

1、在启动程序阶段,第一步,获取配置文件然后生成url映射(即:一个url对应一个XXRequestHandler,从而让XXRequestHandler来处理指定url发送的请求);第二步,创建服务器socket对象并添加到epoll中;第三步,创建无线循环去监听epoll。

2、在接收并处理请求阶段,第一步,接收客户端socket发送的请求(socket.accept);第二步,从请求中获取请求头信息,再然后根据请求头中的请求url去匹配某个XXRequestHandler;第三步,匹配成功的XXRequestHandler处理请求;第四步,将处理后的请求发送给客户端;第五步,关闭客户端socket。

本篇的内容主要剖析【启动程序阶段】,下面我们就来一步一步的剖析整个过程,在此阶段主要是有下面重点标注的三个方法来实现。

import tornado.ioloopimport tornado.web class MainHandler(tornado.web.RequestHandler):    def get(self):        self.write("Hello, world") application = tornado.web.Application([    (r"/index", MainHandler),]) if __name__ == "__main__":    application.listen(8888)    tornado.ioloop.IOLoop.instance().start()

一、application = tornado.web.Application([(xxx,xxx)])

  执行Application类的构造函数,并传入一个列表类型的参数,这个列表里保存的是url规则和对应的处理类,即:当客户端的请求url可以配置这个规则时,那么该请求就交由对应的Handler去执行。

注意:Handler泛指继承自RequestHandler的所有类

        Handlers泛指继承自RequestHandler的所有类的集合

class Application(object):    def __init__(self, handlers=None, default_host="", transforms=None,wsgi=False, **settings):        #设置响应的编码和返回方式,对应的http相应头:Content-Encoding和Transfer-Encoding        #Content-Encoding:gzip 表示对数据进行压缩,然后再返回给用户,从而减少流量的传输。        #Transfer-Encoding:chunck 表示数据的传送方式通过一块一块的传输。        if transforms is None:            self.transforms = []            if settings.get("gzip"):                self.transforms.append(GZipContentEncoding)            self.transforms.append(ChunkedTransferEncoding)        else:            self.transforms = transforms        #将参数赋值为类的变量        self.handlers = []        self.named_handlers = {}        self.default_host = default_host        self.settings = settings        #ui_modules和ui_methods用于在模版语言中扩展自定义输出        #这里将tornado内置的ui_modules和ui_methods添加到类的成员变量self.ui_modules和self.ui_methods中        self.ui_modules = {'linkify': _linkify,                           'xsrf_form_html': _xsrf_form_html,                           'Template': TemplateModule,                           }        self.ui_methods = {}        self._wsgi = wsgi        #获取获取用户自定义的ui_modules和ui_methods,并将他们添加到之前创建的成员变量self.ui_modules和self.ui_methods中        self._load_ui_modules(settings.get("ui_modules", {}))        self._load_ui_methods(settings.get("ui_methods", {}))                        #设置静态文件路径,设置方式则是通过正则表达式匹配url,让StaticFileHandler来处理匹配的url        if self.settings.get("static_path"):            #从settings中读取key为static_path的值,用于设置静态文件路径            path = self.settings["static_path"]            #获取参数中传入的handlers,如果空则设置为空列表            handlers = list(handlers or [])            #静态文件前缀,默认是/static/            static_url_prefix = settings.get("static_url_prefix","/static/")            #在参数中传入的handlers前再添加三个映射:            #【/static/.*】            -->  StaticFileHandler            #【/(favicon\.ico)】    -->  StaticFileHandler            #【/(robots\.txt)】        -->  StaticFileHandler            handlers = [                (re.escape(static_url_prefix) + r"(.*)", StaticFileHandler,dict(path=path)),                (r"/(favicon\.ico)", StaticFileHandler, dict(path=path)),                (r"/(robots\.txt)", StaticFileHandler, dict(path=path)),            ] + handlers        #执行本类的Application的add_handlers方法        #此时,handlers是一个列表,其中的每个元素都是一个对应关系,即:url正则表达式和处理匹配该正则的url的Handler        if handlers: self.add_handlers(".*$", handlers)        # Automatically reload modified modules        #如果settings中设置了 debug 模式,那么就使用自动加载重启        if self.settings.get("debug") and not wsgi:            import autoreload            autoreload.start()Application.__init__
class Application(object):    def add_handlers(self, host_pattern, host_handlers):        #如果主机模型最后没有结尾符,那么就为他添加一个结尾符。        if not host_pattern.endswith("$"):            host_pattern += "$"        handlers = []        #对主机名先做一层路由映射,例如:http://www.wupeiqi.com 和 http://safe.wupeiqi.com        #即:safe对应一组url映射,www对应一组url映射,那么当请求到来时,先根据它做第一层匹配,之后再继续进入内部匹配。        #对于第一层url映射来说,由于.*会匹配所有的url,所将 .* 的永远放在handlers列表的最后,不然 .* 就会截和了...        #re.complie是编译正则表达式,以后请求来的时候只需要执行编译结果的match方法就可以去匹配了        if self.handlers and self.handlers[-1][0].pattern == '.*$':            self.handlers.insert(-1, (re.compile(host_pattern), handlers))        else:            self.handlers.append((re.compile(host_pattern), handlers))        #遍历我们设置的和构造函数中添加的【url->Handler】映射,将url和对应的Handler封装到URLSpec类中(构造函数中会对url进行编译)        #并将所有的URLSpec对象添加到handlers列表中,而handlers列表和主机名模型组成一个元祖,添加到self.Handlers列表中。        for spec in host_handlers:            if type(spec) is type(()):                assert len(spec) in (2, 3)                pattern = spec[0]                handler = spec[1]                if len(spec) == 3:                    kwargs = spec[2]                else:                    kwargs = {}                spec = URLSpec(pattern, handler, kwargs)            handlers.append(spec)                        if spec.name:                #未使用该功能,默认spec.name = None                if spec.name in self.named_handlers:                    logging.warning("Multiple handlers named %s; replacing previous value",spec.name)                self.named_handlers[spec.name] = specApplication.add_handlers
class URLSpec(object):    def __init__(self, pattern, handler_class, kwargs={}, name=None):        if not pattern.endswith('$'):            pattern += '$'        self.regex = re.compile(pattern)        self.handler_class = handler_class        self.kwargs = kwargs        self.name = name        self._path, self._group_count = self._find_groups()URLSpec

上述代码主要完成了以下功能:加载配置信息和生成url映射,并且把所有的信息封装在一个application对象中。

加载的配置信息包括:

  • 编码和返回方式信息

  • 静态文件路径

  • ui_modules(模版语言中使用,暂时忽略)

  • ui_methods(模版语言中使用,暂时忽略)

  • 是否debug模式运行

  以上的所有配置信息,都可以在settings中配置,然后在创建Application对象时候,传入参数即可。如:application = tornado.web.Application([(r"/index", MainHandler),],**settings)

生成url映射:

  • 将url和对应的Handler添加到对应的主机前缀中,如:safe.index.com、www.auto.com

 封装数据:

  将配置信息和url映射关系封装到Application对象中,信息分别保存在Application对象的以下字段中:

  • self.transforms,保存着编码和返回方式信息

  • self.settings,保存着配置信息

  • self.ui_modules,保存着ui_modules信息

  • self.ui_methods,保存这ui_methods信息

  • self.handlers,保存着所有的主机名对应的Handlers,每个handlers则是url正则对应的Handler

二、application.listen(xxx)

  第一步操作将配置和url映射等信息封装到了application对象中,而这第二步执行application对象的listen方法,该方法内部又把之前包含各种信息的application对象封装到了一个HttpServer对象中,然后继续调用HttpServer对象的liseten方法。

class Application(object):    #创建服务端socket,并绑定IP和端口并添加相应设置,注:未开始通过while监听accept,等待客户端连接    def listen(self, port, address="", **kwargs):        from tornado.httpserver import HTTPServer        server = HTTPServer(self, **kwargs)        server.listen(port, address)

class HTTPServer(object):    def __init__(self, request_callback, no_keep_alive=False, io_loop=None,xheaders=False, ssl_options=None):        #Application对象        self.request_callback = request_callback        #是否长连接        self.no_keep_alive = no_keep_alive        #IO循环        self.io_loop = io_loop        self.xheaders = xheaders        #Http和Http        self.ssl_options = ssl_options        self._socket = None        self._started = False    def listen(self, port, address=""):        self.bind(port, address)        self.start(1)    def bind(self, port, address=None, family=socket.AF_UNSPEC):        assert not self._socket        #创建服务端socket对象,IPV4和TCP连接        self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)        flags = fcntl.fcntl(self._socket.fileno(), fcntl.F_GETFD)        flags |= fcntl.FD_CLOEXEC        fcntl.fcntl(self._socket.fileno(), fcntl.F_SETFD, flags)        #配置socket对象        self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)        self._socket.setblocking(0)        #绑定IP和端口        self._socket.bind((address, port))        #最大阻塞数量        self._socket.listen(128)    def start(self, num_processes=1):        assert not self._started        self._started = True        if num_processes is None or num_processes <= 0:            num_processes = _cpu_count()        if num_processes > 1 and ioloop.IOLoop.initialized():            logging.error("Cannot run in multiple processes: IOLoop instance "                          "has already been initialized. You cannot call "                          "IOLoop.instance() before calling start()")            num_processes = 1        #如果进程数大于1        if num_processes > 1:            logging.info("Pre-forking %d server processes", num_processes)            for i in range(num_processes):                if os.fork() == 0:                    import random                    from binascii import hexlify                    try:                        # If available, use the same method as                        # random.py                        seed = long(hexlify(os.urandom(16)), 16)                    except NotImplementedError:                        # Include the pid to avoid initializing two                        # processes to the same value                        seed(int(time.time() * 1000) ^ os.getpid())                    random.seed(seed)                    self.io_loop = ioloop.IOLoop.instance()                    self.io_loop.add_handler(                        self._socket.fileno(), self._handle_events,                        ioloop.IOLoop.READ)                    return            os.waitpid(-1, 0)        #进程数等于1,默认        else:            if not self.io_loop:                #设置成员变量self.io_loop为IOLoop的实例,注:IOLoop使用methodclass完成了一个单例模式                self.io_loop = ioloop.IOLoop.instance()            #执行IOLoop的add_handler方法,将socket句柄、self._handle_events方法和IOLoop.READ当参数传入            self.io_loop.add_handler(self._socket.fileno(),                                     self._handle_events,                                     ioloop.IOLoop.READ)    def _handle_events(self, fd, events):        while True:            try:                #====important=====#                connection, address = self._socket.accept()            except socket.error, e:                if e.args[0] in (errno.EWOULDBLOCK, errno.EAGAIN):                    return                raise            if self.ssl_options is not None:                assert ssl, "Python 2.6+ and OpenSSL required for SSL"                try:                    #====important=====#                    connection = ssl.wrap_socket(connection,server_side=True,do_handshake_on_connect=False,**self.ssl_options)                except ssl.SSLError, err:                    if err.args[0] == ssl.SSL_ERROR_EOF:                        return connection.close()                    else:                        raise                except socket.error, err:                    if err.args[0] == errno.ECONNABORTED:                        return connection.close()                    else:                        raise            try:                if self.ssl_options is not None:                    stream = iostream.SSLIOStream(connection, io_loop=self.io_loop)                else:                    stream = iostream.IOStream(connection, io_loop=self.io_loop)                #====important=====#                HTTPConnection(stream, address, self.request_callback,self.no_keep_alive, self.xheaders)             except:                logging.error("Error in connection callback", exc_info=True)HTTPServer
class IOLoop(object):    # Constants from the epoll module    _EPOLLIN = 0x001    _EPOLLPRI = 0x002    _EPOLLOUT = 0x004    _EPOLLERR = 0x008    _EPOLLHUP = 0x010    _EPOLLRDHUP = 0x2000    _EPOLLONESHOT = (1 << 30)    _EPOLLET = (1 << 31)    # Our events map exactly to the epoll events    NONE = 0    READ = _EPOLLIN    WRITE = _EPOLLOUT    ERROR = _EPOLLERR | _EPOLLHUP | _EPOLLRDHUP    def __init__(self, impl=None):        self._impl = impl or _poll()        if hasattr(self._impl, 'fileno'):            self._set_close_exec(self._impl.fileno())        self._handlers = {}        self._events = {}        self._callbacks = []        self._timeouts = []        self._running = False        self._stopped = False        self._blocking_signal_threshold = None        # Create a pipe that we send bogus data to when we want to wake        # the I/O loop when it is idle        if os.name != 'nt':            r, w = os.pipe()            self._set_nonblocking(r)            self._set_nonblocking(w)            self._set_close_exec(r)            self._set_close_exec(w)            self._waker_reader = os.fdopen(r, "rb", 0)            self._waker_writer = os.fdopen(w, "wb", 0)        else:            self._waker_reader = self._waker_writer = win32_support.Pipe()            r = self._waker_writer.reader_fd        self.add_handler(r, self._read_waker, self.READ)    @classmethod    def instance(cls):        if not hasattr(cls, "_instance"):            cls._instance = cls()        return cls._instance            def add_handler(self, fd, handler, events):        """Registers the given handler to receive the given events for fd."""        self._handlers[fd] = stack_context.wrap(handler)        self._impl.register(fd, events | self.ERROR)IOLoop
def wrap(fn):    '''Returns a callable object that will resore the current StackContext    when executed.    Use this whenever saving a callback to be executed later in a    different execution context (either in a different thread or    asynchronously in the same thread).    '''    if fn is None:      return None    # functools.wraps doesn't appear to work on functools.partial objects    #@functools.wraps(fn)    def wrapped(callback, contexts, *args, **kwargs):        # If we're moving down the stack, _state.contexts is a prefix        # of contexts.  For each element of contexts not in that prefix,        # create a new StackContext object.        # If we're moving up the stack (or to an entirely different stack),        # _state.contexts will have elements not in contexts.  Use        # NullContext to clear the state and then recreate from contexts.        if (len(_state.contexts) > len(contexts) or            any(a[1] is not b[1]                for a, b in itertools.izip(_state.contexts, contexts))):            # contexts have been removed or changed, so start over            new_contexts = ([NullContext()] +                            [cls(arg) for (cls,arg) in contexts])        else:            new_contexts = [cls(arg)                            for (cls, arg) in contexts[len(_state.contexts):]]        if len(new_contexts) > 1:            with contextlib.nested(*new_contexts):                callback(*args, **kwargs)        elif new_contexts:            with new_contexts[0]:                callback(*args, **kwargs)        else:            callback(*args, **kwargs)    if getattr(fn, 'stack_context_wrapped', False):        return fn    contexts = _state.contexts    result = functools.partial(wrapped, fn, contexts)    result.stack_context_wrapped = True    return resultstack_context.wrap

备注:stack_context.wrap其实就是对函数进行一下封装,即:函数在不同情况下上下文信息可能不同。

上述代码本质上就干了以下这么四件事:

  1. 把包含了各种配置信息的application对象封装到了HttpServer对象的request_callback字段中

  2. 创建了服务端socket对象

  3. 单例模式创建IOLoop对象,然后将socket对象句柄作为key,被封装了的函数_handle_events作为value,添加到IOLoop对象的_handlers字段中

  4. 向epoll中注册监听服务端socket对象的读可用事件

目前,我们只是看到上述代码大致干了这四件事,而其目的有什么?他们之间的联系又是什么呢?

答:现在不妨先来做一个猜想,待之后再在源码中确认验证是否正确!猜想:通过epoll监听服务端socket事件,一旦请求到达时,则执行3中被封装了的_handle_events函数,该函数又利用application中封装了的各种配置信息对客户端url来指定判定,然后指定对应的Handler处理该请求。

注意:使用epoll创建服务端socket

import socket, select EOL1 = b'/n/n' EOL2 = b'/n/r/n' response  = b'HTTP/1.0 200 OK/r/nDate: Mon, 1 Jan 1996 01:01:01 GMT/r/n' response += b'Content-Type: text/plain/r/nContent-Length: 13/r/n/r/n' response += b'Hello, world!' serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serversocket.bind(('0.0.0.0', 8080)) serversocket.listen(1) serversocket.setblocking(0) epoll = select.epoll() epoll.register(serversocket.fileno(), select.EPOLLIN) try:    connections = {}; requests = {}; responses = {}    while True:       events = epoll.poll(1)       for fileno, event in events:          if fileno == serversocket.fileno():             connection, address = serversocket.accept()             connection.setblocking(0)             epoll.register(connection.fileno(), select.EPOLLIN)             connections[connection.fileno()] = connection             requests[connection.fileno()] = b''             responses[connection.fileno()] = response          elif event & select.EPOLLIN:             requests[fileno] += connections[fileno].recv(1024)             if EOL1 in requests[fileno] or EOL2 in requests[fileno]:                epoll.modify(fileno, select.EPOLLOUT)                print('-'*40 + '/n' + requests[fileno].decode()[:-2])          elif event & select.EPOLLOUT:             byteswritten = connections[fileno].send(responses[fileno])             responses[fileno] = responses[fileno][byteswritten:]             if len(responses[fileno]) == 0:                epoll.modify(fileno, 0)                connections[fileno].shutdown(socket.SHUT_RDWR)          elif event & select.EPOLLHUP:             epoll.unregister(fileno)             connections[fileno].close()             del connections[fileno] finally:    epoll.unregister(serversocket.fileno())    epoll.close()    serversocket.close() Code

 上述,其实就是利用epoll对象的poll(timeout)方法去轮询已经注册在epoll中的socket句柄,当有读可用的信息时候,则返回包含当前句柄和Event Code的序列,然后在通过句柄对客户端的请求进行处理

三、tornado.ioloop.IOLoop.instance().start()

上一步中创建了socket对象并使得socket对象和epoll建立了关系,该步骤则就来执行epoll的epoll方法去轮询已经注册在epoll对象中的socket句柄,当有读可用信息时,则触发一些操作什么的....

class IOLoop(object):    def add_handler(self, fd, handler, events):        #HttpServer的Start方法中会调用该方法        self._handlers[fd] = stack_context.wrap(handler)        self._impl.register(fd, events | self.ERROR)             def start(self):        while True:            poll_timeout = 0.2            try:                #epoll中轮询                event_pairs = self._impl.poll(poll_timeout)            except Exception, e:                #省略其他            #如果有读可用信息,则把该socket对象句柄和Event Code序列添加到self._events中            self._events.update(event_pairs)            #遍历self._events,处理每个请求            while self._events:                fd, events = self._events.popitem()                try:                    #以socket为句柄为key,取出self._handlers中的stack_context.wrap(handler),并执行                    #stack_context.wrap(handler)包装了HTTPServer类的_handle_events函数的一个函数                    #是在上一步中执行add_handler方法时候,添加到self._handlers中的数据。                    self._handlers[fd](fd, events)                except:                    #省略其他
class IOLoop(object):    def start(self):        """Starts the I/O loop.        The loop will run until one of the I/O handlers calls stop(), which        will make the loop stop after the current event iteration completes.        """        if self._stopped:            self._stopped = False            return        self._running = True        while True:            # Never use an infinite timeout here - it can stall epoll            poll_timeout = 0.2            # Prevent IO event starvation by delaying new callbacks            # to the next iteration of the event loop.            callbacks = self._callbacks            self._callbacks = []            for callback in callbacks:                self._run_callback(callback)            if self._callbacks:                poll_timeout = 0.0            if self._timeouts:                now = time.time()                while self._timeouts and self._timeouts[0].deadline <= now:                    timeout = self._timeouts.pop(0)                    self._run_callback(timeout.callback)                if self._timeouts:                    milliseconds = self._timeouts[0].deadline - now                    poll_timeout = min(milliseconds, poll_timeout)            if not self._running:                break            if self._blocking_signal_threshold is not None:                # clear alarm so it doesn't fire while poll is waiting for                # events.                signal.setitimer(signal.ITIMER_REAL, 0, 0)            try:                event_pairs = self._impl.poll(poll_timeout)            except Exception, e:                # Depending on python version and IOLoop implementation,                # different exception types may be thrown and there are                # two ways EINTR might be signaled:                # * e.errno == errno.EINTR                # * e.args is like (errno.EINTR, 'Interrupted system call')                if (getattr(e, 'errno', None) == errno.EINTR or                    (isinstance(getattr(e, 'args', None), tuple) and                     len(e.args) == 2 and e.args[0] == errno.EINTR)):                    continue                else:                    raise            if self._blocking_signal_threshold is not None:                signal.setitimer(signal.ITIMER_REAL,                                 self._blocking_signal_threshold, 0)            # Pop one fd at a time from the set of pending fds and run            # its handler. Since that handler may perform actions on            # other file descriptors, there may be reentrant calls to            # this IOLoop that update self._events            self._events.update(event_pairs)            while self._events:                fd, events = self._events.popitem()                try:                    self._handlers[fd](fd, events)                except (KeyboardInterrupt, SystemExit):                    raise                except (OSError, IOError), e:                    if e.args[0] == errno.EPIPE:                        # Happens when the client closes the connection                        pass                    else:                        logging.error("Exception in I/O handler for fd %d",                                      fd, exc_info=True)                except:                    logging.error("Exception in I/O handler for fd %d",                                  fd, exc_info=True)        # reset the stopped flag so another start/stop pair can be issued        self._stopped = False        if self._blocking_signal_threshold is not None:            signal.setitimer(signal.ITIMER_REAL, 0, 0)

对于上述代码,执行start方法后,程序就进入“死循环”,也就是会一直不停的轮询的去检查是否有请求到来,如果有请求到达,则执行封装了HttpServer类的_handle_events方法和相关上下文的stack_context.wrap(handler)(其实就是执行HttpServer类的_handle_events方法),详细见下篇博文,简要代码如下:

class HTTPServer(object):    def _handle_events(self, fd, events):        while True:            try:                connection, address = self._socket.accept()            except socket.error, e:                if e.args[0] in (errno.EWOULDBLOCK, errno.EAGAIN):                    return                raise            if self.ssl_options is not None:                assert ssl, "Python 2.6+ and OpenSSL required for SSL"                try:                    connection = ssl.wrap_socket(connection,                                                 server_side=True,                                                 do_handshake_on_connect=False,                                                 **self.ssl_options)                except ssl.SSLError, err:                    if err.args[0] == ssl.SSL_ERROR_EOF:                        return connection.close()                    else:                        raise                except socket.error, err:                    if err.args[0] == errno.ECONNABORTED:                        return connection.close()                    else:                        raise            try:                if self.ssl_options is not None:                    stream = iostream.SSLIOStream(connection, io_loop=self.io_loop)                else:                    stream = iostream.IOStream(connection, io_loop=self.io_loop)                HTTPConnection(stream, address, self.request_callback,                               self.no_keep_alive, self.xheaders)            except:                logging.error("Error in connection callback", exc_info=True)

结束

本篇博文介绍了“待请求阶段”的所作所为,简要来说其实就是三件事:其一、把setting中的各种配置以及url和Handler之间的映射关系封装到来application对象中(application对象又被封装到了HttpServer对象的request_callback字段中);其二、结合epoll创建服务端socket;其三、当请求到达时交由HttpServer类的_handle_events方法处理请求,即:处理请求的入口。对于处理请求的详细,请参见下篇博客(客官莫急,加班编写中...)